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Abstract— Precise calibration of camera intrinsic and extrin-
sic parameters, while often useful, is dif cult to obtain during
eld operation and presents scaling issues for multi-robot
systems. We demonstrate a vision-based approach to navigation
that does not depend on traditional camera calibration, and
present an algorithm for guiding a robot through a previously
traversed environment using a set of uncalibrated cameras I = L
mounted on the robot.

On the rst excursion through an environment, the system
builds a topological representation of the robot's eXplor"_’mOn Fig. 1. We present a vision-based method for ground robotgation.
pé,‘th{ encoded as a place .graph. On subsequgnt navigation Assuming that the robot has previously explored the envirartrfied pat),
missions, the method localizes the robot within the graph the method provides guidance in the robot's body frame durévisitation
and provides robust guidance to a specied destination. We (black arrow3. we demonstrate the robustness of our method on real-world
combine this method with reactive collision avoidance to obtain experiments in highly dynamic scenes.

a system able to navigate the robot safely and reliably through
the environment. We validate our approach with ground-truth
experiments and demonstrate the method on a small ground

abk |

Exploration

mobile ground robots.

rover navigating through several dynamic environments. In particular, we consider the problem of robot navigation
within a previously visited environment, a commonly degire
|. INTRODUCTION ability for a mobile robot that operates exclusively witkdn

Vision-based robot navigation algorithms typically assumtarget region. Robots serving as delivery agents, passenge
that the camera intrinsic parameters (focal length, opttransports, building guides, patrols, etc. all requirs fainc-
cal center, and distortion) and extrinsic parameters (robdionality, which may be considered as a baseline capability
relative pose) have been determined in advance and do riot a large class of mobile robots. We impose no constraint
change over time unless speci cally controlled by the roboton the environment except that the traversable region can be
Knowledge of these parameters enables the projection @fodeled as a 2D manifold, and that it contains descriptive
points on the image plane into rays in the robot body frame#jsual features.
allowing the robot to use its cameras to reason geomefricall The primary contribution of this paper is a method that
about the world with well-studied algorithms such as stere@xtends our previous work in human-directed navigation [1]
structure-from-motion, visual SLAM, and visual odometry. to provide coarse waypoint navigation for mobile robots. In

Obtaining the calibration parameters typically requiresontrast to our earlier work, this paper presents a method fo
a special calibration process involving visual patterns cutonomous robotic navigation with uncalibrated cameaas,
environments that are speci cally designed and consttucteproblem that is very different from that of guiding a human.
to aid parameter recovery. While the calibration proceduré/e describe and demonstrate an algorithm that uses multiple
may be convenient and expeditious in a laboratory or corgameras to yield directional commands for a robot, without
trolled environment, it may not be feasible to execute ifaving or estimating the camera intrinsic parameters or the
the eld or in any situation in which the calibration tools camera-to-robot rigid body transformations. We assume tha
and equipment are not available. Especially in the cagbe robot can accept directional commands, and has a basic
of deployments of large numbers of robots, executing theeactive obstacle avoidance capability.
calibration procedure may be challenging. Robots opeagatin
in real-world conditions may often be bumped, damaged,
repaired, or otherwise altered in such a way that would Robotic navigation has been well-studied in the context of
invalidate previously acquired calibration data. Robotym range-based sensors such as sonar and LIDAR. Numerous
often be disassembled for storage or transport and parts magtric mapping techniques exist for robots operating in a
shift slightly during reassembly. A natural question to &k 2D environment using bearing-only sensors [2], [3], and
then: What can be accomplished without traditional camemxtensions to full 3D environments have been demonstrated.
calibration? We investigate this question in the context dflany of these techniques have been successfully applied
mobile robot navigation, and propose a method for visiorto visual navigation, where precise camera calibration is
based navigation using uncalibrated cameras, suitable fassumed. Visual odometry [4] and visual SLAM [5]-[7] in

II. RELATED WORK



particular have seen signi cant progress in recent yeass. Tive View Stream Place Graph Place Graph
alleviate some of the scaling issues present in metric mappi @ — | Generation |7 (m
systems, researchers have also studied topological n@ppin
techniques that use connectivity graphs to model traversab

J
regions [8], [9]. ‘ lT

Whether range- or vision-based, each of these approaches

require precise calibration of the sensor intrinsic andiesic 'ézgﬁig%?]e :5°°p Closure
parameters. In the absence of executing a specialized aamer etection
calibration procedure, one approach is to attempt autemati i

calibration during eld operation [10], [11]. Such self-

calibration methods are typically able to recover the focal | Rotation Guidance|

length, principal point, and image skew from camera rotatio
Still an active area of research, existing methods are nofig. 2. Method overview. During exploration, the systemldsiia place
vl to implement, and usually ignore nonlinear effectdf P ITIseeHng e kot eiparn bl D, e
such as radial distortion. Meanwhile, recovering extansironots body frame.

parameters, speci cally the camera-to-robot transforomat

is not feasible using these techniques.

A key challenge for a navigation algorithm is the ability
to recognize when the robot has arrived at a previousgprresponds to a physical location in the environment, avhil
visited place, usually referred to as the “loop-closingdlpr @n edgee 2 E corresponds to a known physical path between
lem. Vision-based algorithms commonly accomplish this by'€ corresponding pair of nodes. Associated with each node
comparing newly observed visual features with previousi¥fk IS the set of \/_lsual features observed at Fhat location on the
observed features. Recent bag-of-words approaches, whit¢Y t0 each of its neighbors. No observations are associated
quantize features into visual “words” and use a set ofith graph edges. Hence, the graBiran be thought of as a
observed words to represent a place, have improved the spS8g@rse visual representation of the robot's exploratidh.pa
and robustness of visual loop closing [12], [13].

Our approach is motivated by simplicity in practice. It
makes no assumptions about the environment except that
it is traversable by a wheeled robot, and that it contains
descriptive visual features. The latter is a typical reguient
of any vision system, as a sparse visual eld often results
in degenerate solutions for many vision algorithms. Our
approach does involve a “training” phase to extract some
basic camera parameters. However, the training procedure i
simple and can be executed quickly and with minimal effort.

l1l. M ETHOD OVERVIEW Fig. 3. We represent the robot's exploration path as an entéd graph

Our approach assumes th the robot.rst explores the efffr® [odes epresent eaons 1 e word and egeszmprysc
vironment. During thisexploration phasgthe system builds associated with each node.
a topological representation of the robot's path that wé cal
the place graph The place graph records visual information
only. In our experiments, this step is performed manually. At the start of the exploration phase, the gra@his
However, methods exist to automate this phase [14], [15].empty. As the robot explores the environment, new nodes are

In a second phase, the robot navigates autonomousiglded to the graph. Nodes are instantiated when the visual
through the explored environment. We split the navigatioappearance of the local environment differs suf cientlgrfr
problem into two complementary processes. First, a higlthat of the previous node, as measured by the variation in
level vision-based method provides global localizatiothi@ visual features. More speci cally, we measure variation in
place graph as well as a coarse directional cue in the robogppearance based upon a distance functiothat matches
body frame. The second consists of a low-level obstackets of features between two images, and returns the nor-
avoidance algorithm that steers the robot's motion in thenalized mearlL, distance between matches in the feature
desired direction while reactively avoiding local obséscl descriptor space. Feature matching utilizes a func@ahat

Figure 2 illustrates the method. we describe inx 1lI-B. When the distancé& between the
] current observations and those of the last node exceed a
A. Place Graph Generation threshold, we instantiate a new node in the graph, joineld wit

The place graph, shown in Figure 3, is a topologicaan edge to the previous node. We use a distance threshold of
representation of the robot's exploration path as an und®:85, although we found the method to yield similar results
rected graphG = (V;E). Each node in the graptr 2 V  for a range of values((7 to 0:9).



B. Feature Matching D. Body-centered rotation guidance

Our localization and guidance algorithms make use of \we now present an algorithm that provides rotation guid-
a method for matching features betweeiews where we ance to the robot in its own body frame using only data from
de ne a view to be a set of images captured by all cameragcalibrated cameras. We show that using gesenceof a
at the same time. The features within each set are oft@gature in a camera as a measurement, rather than its precise
sparse and, as a result, it is dif cult to nd optimal matchesyosition in the image, provides nearly the same navigation-
within a high-dimensional feature space. Our approach |gjevant information when the number of observations is
to use a brute-force feature matching algorithm, denoted ffge.
© throughout the remainder of the paper, which includes & e intuition underlying our method is as follows: if a

mutual consistency check (i.e., no two features in one Sglayre corresponding to a static world point is observed

may match the same feature in the other). The algorithgy, 5 camera at time and re-observed on another camera
takes as input two sets of observatidizs; z g (respectively, 4 ime (0, the correspondence carries information about

two image views f;;f; g), and outputs the matches betweenpe rejative orientation of the robot between tirmeand
them, ©(z;z) (respectively,©(fi;f;)). For large feature (ine (0 (Figure 4). If the extrinsic and intrinsic calibration
sets, an optimized vocabulary tree provides fast matchingsameters are known, this is a trivial statement since the
(seex II-F). relative orientation may be deduced from basic geometric
C. Global localization reasoning. However, we demonstrate a means of estimating

The global localization algorithm estimates the positioﬁhe relative. origntation with no prior intrinsic or extrins
of the robot in the graphG = (V:;E). We propose a Ccamera calibration.
general probabilistic approach to the problem that acsount

for uncertainty in the robot's motion and in its visual obser fmet fme >t
vations. Speci cally, the algorithm maintains a distrilaut @' @'
over the robot's position in the graph, which we treat as '\ camerai \

the hidden state. The formulation models the motion of the carera |

robot within the graph as a rst-order Markov process. The

visual measurementsprovide observations of the state. The @ @

localization algorithm maintains the position's distrilaun
over time using a recur'swe Ba.y.e3|an lter. . Fig. 4. We estimate the relative orientation of the robot leemwthe rst
We model the robot's transitions between nodes in th@sit at timet and another visit at time° using feature matches between
graph p(Xk+t j Xk) asga discrete Gauss window functionthe two views with no prior camera calibration.
w(n)=exp i 3(xg)? wheren is the distance in graph
space andN the width of the window. We de ne the ob- et us model the environment as a horizontal 2D plane
servation modep(z j xk) using the® distance introduced (z-axis up). We consider a set ofcameras rigidly mounted
in x Ill-A as: together observing the environment, each having the same
Pz j Xk) = 1=( z; 2y, ) (1) eld of view f. For each camera pafi;j ), we consider

_Pi (®), the probability of re-observing a feature on camera

where z,, denotes the visual observations associated With {15t was observed on cameraafter a rotation of the
nodexg. The intuition underlying this representation is thai.;meras by an angl®. For instancep; (0) = 1 for anyi if

the probability for the robot to be at some graph locatiog,e 4ssume perfect feature matching. Similagy,(0) = 0
is directly related to the visual similarity of the currentjt ihe elds of view of camerai and camera do not
observations with the observations made at that node durilgge”ap andi 6 j. Assuming isotropic distribution of the

the st visit. . o , ) features, each probability follows a triangular distribat
Given the discrete distributiop(xx j zx) at timek, the pi = ¢(®hj ;% ) as illustrated in Figure 5. The anghg
localization algorithm recursively estimates the newrdist ;o o function of the geometric con guration of the cameras
bution at timek +1. In the prediction step, the lter ISt i, . = o for anyi. In addition, the limits of the triangular
incorporates the effect of robot motion on the d'St”b“t'orbistribution are dened by the eld of view common to
p(Xk+1 ] Zx) based upon a rst-order Markov motion modela” cameras%f = % = £2=6 for any pair (i;j ). We

P(x+1 ] Xi). The update step then incorporates the obsefgnresent the set of distribution as ann £ n matrix
vation modelp(zy+1 >j(xkﬂ) to obtainp(Xk+1 J Zk+1) as:

P(Xks1 j Zk) = P(Xk+1 j Xk) EP(Xk j Zk) (2a) demonstrate the process of determining the robot's relativ

. _ . . orientation between timeand timet® using the match matrix
Pkt J Ziwn ) =, OP(Zen X1 ) OP(Xk1 J 2) - (2D) 54 4 set of feature correspondences. Given a match between

where, is a normalization factor. The distribution is updateda feature on cameraat timet and a feature on camejaat

only on a local neighborhood around the current robottme t° we know that the relative orientation of the rol#t

position in the graph (i.e., the probability is zero elsewe follows the distributionp; , ® » ¢(hj ;%). If we estimate®

which yields a constant time complexity for the algorithm. to be® = h;; , the associated erroris= ® | ® » ¢(0;%).
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0 " . Pi We estimate the rotation angle based upon the assump-

S tion that the robot rotates in place at constant speed and
a /\ performsr turns, which, ovemm views, yields the estimate
( » | a ®yq = 2%(qi p)=m. While this assumption is not perfectly

e 0 hy- f Hij hy + f met in practice, we note that an error sfdegrees spread

over the training sequence generates an erroggnthat is
Fig. 5. We consider the probability; (®) of re-observing a feature on linear in +. Simulations reveal an error & 7* for + = 20*

camerg that was observed on camerafter a rotation of the cameras &y andm = 300. which is acceptable for our application
Assuming isotropic feature distributiop; follows a triangular distribution ! ’

whose limits are de ned by the eld of view of a single camdra

Algorithm 1 Match matrix training algorithm

GivenN correspondences, the estimate becomes Input: a training video sequence af views
N Output: then £ n match matrixH (for n cameras)
&= he (3) L Initialize H(i:j) A0,0- i;j<n
N : 2: Initialize Hs(i;j ) A 0,0 i:j<n

1 ~
. . 3: Initialize He(i;j) A 0,0 i;j<n
As per the Central Limit Theorem, under the assumpt|on4: for each pair of viewFy; Fq) in the sequencelo

that the errors are independent and identically distrihute

o . 5:  Estimate the robot rotation ang®&, linearly
2 q
the error2 tends to a normal dIStI’IbutIO; a$ increases, 6. for each matchmy = (fip:fiq) 2 O(f p:fq) do
% 7: Let sip (Skqg) be the camera ID fofp (fiq)
25N O;%); %= - 4 kip Sk ke kg
0:%) N @ 8: Hs(Sk;piSkig) A Hs(Skp: Skiq) + Sin( ®pq)

Hence, the error in the estimate @fis zero-mean and 9 Hc(Skip;Skia) A He(Skp; Skiq) + COS(®pq)
exhibits a variance that decreases inversely with the numb&0: H (i;j ) A arctan(Hs(i;j )=Hc(i;j)), 0+ i;j<n
of observations wheN is large. For instance, a eld of view
f =90* yields %= 36:7* (for N = 1) and¥y = 2:6* (for _ _ ,
N = 200). F. Loop closure using an online visual vocabulary

Our method yields the following rotation guidance algo- The ability to detect when the robot is returning to
rithm. Given two sets of image feature$ and zt’ cap- a place that it has previously visited (i.e., loop closure)
tured at the same location, we compute the feature matchesfundamental for autonomous navigation. We propose a
©(z‘;zt°). For each match between a feature on carharad method that detects loop closures automatically using only
a feature on cameljg we query the match matrix and obtainthe visual appearance of the environment. Our method builds
an estimaten;; . We then estimate the relative orientation ofon the standard “bag-of-words” approach, in which features
the robot using Equation 3. are represented by “words” in a visual dictionary [17].

. . . Our method uses this vocabulary to ef ciently compute the
E. Learning the match matrix from training similarity between each pair of nodes in the graph. The
The algorithm presented in the previous section reliegata is stored in aimilarity matrix The algorithm then
on knowledge of the match matrix. Here, we describe getects continuous sequences of highly similar nodes in the
method that learns the match matrix from training. Thenatrix. Our method requires no batch processing, no initial

training algorithm takes as input a video sequence capturggcabulary, and takes as input only a stream of images.
while the robot rotates in place clockwise in an arbitrary

environment and outputs thke;; elements of the match
matrix H. Outlined in Algorithm 1, the method proceeds (o)
as follows. Given any two viewsF,; Fqj p < qg captured

at timesp andq and separated by a rotation of the robot by
®)q, the algorithm rst computes the set of feature matches
©(Fp; Fq), noting the start and end camesg, andsy.q, for
each correspondende The algorithm then incorporates the

estimate rotat|0|®pq to Update the average estimate for eac ig. 6. The visual features of each new node in the place gaaplstored

pair's element in the match matril (Sk;p; Sk,q). In order in"a vocabulary riddle. Each word stores an inverted index pointing to
to take periodicity into account, the averafjeof a set of the nodes where it was observed. Search and query are opfimizeg a

anglesf ;g is derived from averaging rotation angles usingée-Pased data structure.

the transfor,mation frorlvg polar to Euclidean coordinates, i.  We represent each word in the vocabulary as a sphere in
1 =arctan( sin("ij)= cos(;)). We emphasize that the the feature descriptor space, centered on the corresgpndin
training method is fully automatic, is performed only onceeature with a xed radius. At the start of exploration, the
for a given camera con guration, and is independent of theocabulary is empty. As nodes are inserted in the place
training environment. The matrid is therefore signi cantly graph, the corresponding visual features are inserteddn th
easier to compute and more compact than the full set ebcabulary. We declare a new word to match an existing
intrinsic and extrinsic parameters would be. word in the vocabulary when the, distance between their

0+ o N 1234
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centers does not exceed the xed radiyg. If no match IV. SYSTEM DESCRIPTION

word stores an inverted index of the nodes in the place gragfith wheel encoders, a low-cost inertial measurement unit,
where it has been observed (Figure 6). The radiuss a an omnidirectional camera rig, and a planar laser range
parameter of the algorithm and in uences the performancganner. The rig is composed of four Point Grey Fire y MV
of the vocabulary. cameras equipped with 2.8 mm Tamron lenses. The overall
A standard approach to optimize search and query in thg|q of view of the rig is 360t horizontally andBC* vertically.
vocabulary is to maintain a tree-based data structure [173he Hokuyo UTM LIDAR is used for obstacle avoidance,
[19]. A search within this structure is faster than a naivgnqg to puild maps for a metric validation of our approach.

search as long as the number of examined nodes is bounggf aigorithms run on an Intel quad-core laptop (2.5GHz,
using a fast approximate search procedure. Alternatively,gg RAM) mounted on the robot.

we also propose a method that optimizes the naive search )
when the feature descriptors are normalized. In this cas®; OPstacle avoidance
minimizing the L, distance between two features and Our algorithm provides high-level navigation instructon
Vv is eqéuivalent to maximizing their dot products, sinceand assumes that the robot can accept basic directional
kuj vk® = kuk® + kvk® j 2¢u¢v = 2 i 2¢u¢v. This commands and avoid obstacles. Using the planar LIDAR
approach is particularly powerful when multiple vocabular for this task, the avoidance strategy assigns a cost metric
queries are done at the same time, which is the case wheitoabody-relative angles, penalizing angles that are famfro
node is inserted in the graph. the guidance direction and those in the direction of nearby
We represent a vocabulary ofwords as am £ n matrix ~ obstacles. The robot then greedily drives in the direction
W, wherem is the dimension of the feature descriptor spaceaf lowest cost. This simple reactive strategy has proven
We represent a set qf input features as @ £ m matrix effective in practice, yet our navigation strategy is antdma
F. The matrixD = F ¢W therefore contains the inner to advanced methods based on sonar, infrared range sensors,
product of each input feature and each vocabulary wordouch sensors, and possibly even the uncalibrated cameras
A straightforward search through the matrix determines thidnemselves [22], [23]. More accurate obstacle sensing will
closest word to each feature. We also apply this optiminatiogresult in smoother robot trajectories, though the navigati
to the exhaustive search used in the leaves in the tree-bagdgorithm is unaffected by the choice of obstacle avoidance
method. We nd that optimized linear algebra libraries deab method.
the naive gpproach to out_perform the treg—based method up V. VALIDATION AND RESULTS
to a certain vocabulary size, beyond which the tree-based .
method is faster (see V-A). A. Vocabulary Tree Evaluation
The loop closure algorithm maintainssimilarity matrix ~ We compare the performance of the visual vocabulary for
that contains the co-similarity between nodes. When a nodlee naive method and the tree-based method [17] described
is inserted in the graph, its features are searched in theXx Ill-F (Figure 7). We use the Intel Math Kernel Library
vocabulary. A voting scheme then returns a similarity witffor fast matrix multiplication in the naive approach. Foeth
all nodes currently in the graph (Figure 6). The method i§ee-based method, we use a tree branching faCter 10.
causal and runs online during exploration. The method considers onlis - K children at every
Given a similarity matrixS, we identify sequences of node. WherKs = K, the search is exhaustive and is less
visually similar graph nodes. We use a modi ed form of theeffective than the naive search due to the overhead cost of
Smith and Waterman algorithm [20], [21], which computegarsing the tree. However, fd(s - 3, the tree-based
an alignment matrixA accumulating the score of diagonalmethod outperforms the naive search beyond a vocabulary
moves througts. That is,A(i;j ) is the maximum similarity Size of aboutl®> words (equivalent to roughly one hour of
of two matching sequences ending at no@dad nodg . The  exploration with our system).
algorithm then nds local maxima in the matrix and traces

the corresponding sequence througghuntil the similarity Wi |
falls below a given threshold. The algorithm is repeated |k ?
on the matrixS with rows in the reverse order to detect §“ &' |“weiis| 02— T

alignments when the robot moves in the opposite direction.
A correspondence between a sequence pofnodes
fviq;¢C¢vi,g and another sequencévs;i; ¢ ¢ ¢vapg T
means that nodes x andv, (1- k - p) correspond to the
same physical location. We update the gr&placcordingly. 10

For eachk 2 f1;¢¢¢pg, we connect all neighbors of

Vik 10 Voy and remove the nodal;k from the graph. I_:ig. 7. Performance of the visual voc_abylary for the naive oetfdashed
Additi I replaces anv reference in the line) and the tree-based method (solid lines). The paranketerefers to
monally, vzx rep y 00y | the maximum number of children explored at every tree node (maniisu

other node sequences. The numpes a parameter of the 10).
algorithm (we usep = 5).

Search time (secs)
.
S
T

100
Vocabulary size



Dataset Mission Duration | Distance Traveled Average Speed # nodes| 1 Ip g In 1R
Exploration 24min 289m 0:20m/s 242

LAB Mission A 18min 99m 0:09m/s 3= 0:16m | 0:25 | 0:43m | 13:1*
Mission B 21min 119m 0:10m/s 4=4 | 0:30m | 0:65 | 0:82m | 10:9*
Mission C 35min 160m 0:08m/s 3=3 | 0:31m | 0:61 | 0:78m | 1L7*
Exploration 26min 402m 0:26m/s 255

GALLERIA — - *
Mission D 29min 171m 0:09m/s 3=3 | 1:119m | 1:.02 | 2220m | 17.5°

Fig. 8. Datasets.

B. Real-World Explorations

We demonstrate our algorithms on two datasets (Figure 8).
The LAB dataset consists of a 24-minute exploration through
various of ce spaces, followed by three missions (A, B and
C) totaling 74 minutes. TheALLERIA dataset consists of a
26-minute exploration within a crowded mall-like environ-
ment followed by a 29-minute mission. In each mission, the
robot is tasked with reaching a series of checkpoints within
the graph. The missions often require the robot to traverse
locations in the opposite direction of the rst visit. Figu®
shows the* distance for a section of theALLERIA dataset.

Whenever the (smoothed) function exceeds a threshold,rg. 10. Loop closure on a 24 minute exploration path acrossfae
node is added to the graph_ environment (AB dataset). Loop closure detections are shown in red.
Numbers refer to decision points in the place graph (Figu)e\W# use the
metric map and egomotion estimates for validation only.

Y distance
°o o o
52 o

o
N

30
Time (sec)

Fig. 9. The distance functioA during exploration for thesALLERIA
dataset (smoothed function shown in bold). A node is addethéogtaph
whenever the smoothed distance exceeds a threshold (we8%e 0.

Fig. 11. Similarity matrix and place graph rendered using angpmass
model (AB dataset). Loop closure detections correspond to segmetits in
C. Loop Closure Detection similarity matrix. The path of the robot was 0, 1, 2, 3, 2, 4, 5465, 1, 0.

Figures 10 and 11 illustrate the loop closure algorithm on
theLAB dataset. Dark values in the similarity matrix indicate

. P ) each pair of views in the sequence, we run the rotation
high similarity between nodes. The numbers associate t Cidance algorithm and compare its output with that of

detected segments with their locations in the place graph. .. hoard IMU exhibiting a drift rate of less than one
The method detects the three loop closure events effegtive gree per minute. Figure 12 shows the average rotation
we empha5|ze th.at our m?t?]Od runs online a\r/]\(/j does not pu or with respect to the number of features per view (50,000
.orfrequw.e a mtletnfc map 0(: e ek:]vw?.r&mt.ant. e use memc?fata points per trial). For large numbers of features, the
Information only for ground-truth validation. standard deviation decreases roughly with the square root
D. Body-Relative Rotation Guidance of the number of observations, as expected from Equation 4.
We emphasize that the sequence was captured in an arbitrary

We rst evaluate the accuracy of the match matkik . o -
environment that is different from the one used for training

obtained for the system described»rV. Based upon the

construction of the camera rig, which provides a groundtrut
separation o0 between cameras, the error in the match
matrix exhigits a standard deviation Bf9*.

1
0 888 1758 | 845

\Number of features| 1408| 1166| 905| 676| 450| 265| 148 | 80| 28 8
Rotation error (deg.) 2.0| 2.3| 2.2| 2.4| 2.8| 3.2| 3.9|6.4| 20.0| 53.7

Fig. 12. Rotation guidance error versus number of features.

H = % '1322 i 93,2 933 i 127323 We analyze the performance of the vision-guided naviga-
845 '175'4 . 89:0 0 tion method using the ground truth vehicle trajectoriesi; es

mated with the publicly available GMapping [24] localizati
We validate the rotation guidance algorithm using a seqeienand mapping tool. The GMapping application provides a
captured as the robot rotates in place for 30 seconds. FBLAM solution based upon a Rao-Blackwellized particle



Iter algorithm. The result is a maximume-likelihood estitea sion. Despite the signi cant variation and busy conditions
of the vehicle trajectory along with an occupancy grid maphe robot was able to recover from severe off-path trajezgor
of the environment, as in Figure 10. For each of the twand successfully reached its destination (Figure 1).
datasets, we rst process the odometry and LIDAR data from
the exploration phase to generate a reference map and @an
estimate of the ground truth exploration trajectory. We do
the same for each of the navigation missions to resolve thewe run all algorithms on an Intel quad-core computer
robot's true trajectory within the corresponding map. Werth (2.5 GHz, 4 GB RAM). Each camera producdg6 £ 240
align each navigation map with the mission's reference magrayscale 8-bit images at 30 Hz. The computation of the
in order to transform the ground truth navigation and corSIFT features runs at 6 Hz for an average of 150 features per
responding exploration trajectories into a common refegen camera (each of the four cameras maps to one processor). A
frame. loop of the place graph generation runs in 100 msecs with
The ground-truth localization of the robot provides severas00 features per view. Node creation takes negligible time,
metrics to evaluate the navigation performance (Figure 1330 the place graph generation algorithms runs overall at 10
First, we considet ¢ , the number of times the robot suc-Hz. During navigation, the global localization algorithoms
cessfully reaches the target destination. In addition, &eel  at 1.5Hz using a graph search radius of The rotation
1p as the distance between each point on the navigatiguidance algorithm runs at 5Hz. All algorithms run in
path and the closest point on the exploration path. Thisarallel, so the system provides directional guidance at 5H
metric measures theeproducibility of the navigation. We while localization updates occur at 1.5 Hz.
evaluate the precision of the local node estimation allgorit
by dening * as the distance in graph space between:;,
the location estimated by the robot and the true Iocatiom 1.2
Similarly, we considef y the metric distance between the g
current location of the robot and the physical location ofCOB
the estimated node. Finally, we de ne the rotation gwdancg 06
errort g as the difference between the body-centered rotatlog
guidance and the direction from the current position of thqg ‘ : ‘ ‘ ‘ ‘ \ ‘
robot to the next node in the path. Figure 8 summarizes tfé 0 200 400 600 800 1000 1200 1400 1600 1800 2000

System Performance

Time (sec)
results.
- R . Fig. 14. Distance to original pathAB dataset, Mission C). Mean value
Tk Successful arrival at destination unitless shown as a dotted line.
ip Distance between exploration and navigation patimeters
g Place graph error unitless
In Distance to estimated node meters 3
R | Rotation guidance error degrees 7 o 771%
) . ) 2 1 21.1%
Fig. 13. Evaluation metrics. w2 ® o 2 1.4%
= 3: 0.3%
2
Figure 14 shows the evolution Ofp OVer time fOr 21 jumcwe com com comrmme e ciieitiimnn o comee cone ¢ e
mission C. The average distance to the original path i§
0:30m and reaches about one meter at several locations ‘ " ‘ —

along the mission. These variations can be explained by the’ © 100 200 300 00 Tirgeg S0 700 80 900

low reaction time of the controller, yielding slightly offath

trajectories in tight turns. Figure 15 illustrates the erfi@  Fig. 15. Distance in graph space between the estimated nati¢han

graph space) of the node estimation algorithm. Overall, tH@ect nodei(as dataset, Mission A).

algorithm performs well and localizes the robot with a weorst

case accuracy of three nodes. Similarly, the distance to the

estimated node is bounded over time and exhibits an average2 r

of 0:42m (Figure 16). Finally, the rotation guidance errorg

average is nearly zero with a typical standard deviation oé

12* (Figure 17). At timet = 450 sec, we observe a peak in £ 1

the rotation error due to motion blur in the images wh|ch, ‘ | ' Il

resulted in poor feature detection. il L i ‘ T ’ i ,‘ i r; il
TheGALLERIA dataset (Figure 19) is of particular interest.2 04 e S I o T Boo s0s 150 Lo

For this dataset, we purposely explored the environment dur Time (sec)

ing a very low-activity period of the week, while executing

the navigation mission at rush hour. Consequently, many

passers-by interfered with the robot's path during the mis-

tanc

Fig. 16. Distance to the estimated nodeg dataset, Mission A).
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[2]
Fig. 17. Rotation guidance error with respect to the dicecto the next
node (AB dataset, Mission A). Time lapsée{t) and histogramr{ght). 3]
Mission A: V, W, X
Mission B: X, Y, Z [4]
Mission C: V, W, Z, V
[5]
(6]
(7]
10 m
— [8]
Fig. 18. LAB dataset: ground-truth paths followed by the robot during
mission A plue), B (red) and C @reer). 9]
[10]
Mission D: M, N, O, P, N
[11]
[12]
[13]
[14]
[15]
Fig. 19. GALLERIA dataset: exploration pathed) and revisit pathiflue).
During the second half of the mission, many passers-by imeréth the [16]
robot's path. Yet, the robot reaches its destination sisfobg [17]
VI. CONCLUSION
[18]

We described a vision-based navigation method for a
ground robot in unknown environments. On the rst exCury;q)
sion through the environment, the method builds a topologi-
cal representation of the robot's path. Upon revisitatite,

. . . 0]
method localizes the robot in the graph and provides coaré@,
yet robust navigation guidance in the robot's body framea1)
Our method assumes no prior intrinsic or extrinsic camera
calibration. We demonstrated our system on 2.5 hours a
1,200 m of exploration through real, dynamic environments.

[23]
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