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Abstract

The recent trend towards mobile computing has in-
troduced new challenges such as migrating a user’s
computing environment as he moves from location
to location. Although laptops offer a great deal of
mobility, they still suffer from traditional drawbacks,
such as having weak computing power compared to
desktops and being relatively expensive and encum-
bering. In the past few years, the concept of a vir-
tual environment that can be suspended at one place
and resumed at another has started to emerge, open-
ing the door to true mobility. In such a world, a
user would be able to work on his desktop at home
in Texas, take a plane to California, and resume his
work on any computer in LA exactly as it was when
he left Texas.

We propose a virtual machine-based migration
platform that preserves active network connections
across machine migrations. To make our system fully
deployable, we require neither cooperation from the
outside world nor any modification to the host oper-
ating system. The platform provides machine and
network transparency as well as fault tolerance in
data integrity.

1 Introduction

In today’s computing environment, it is common for
one user to encounter several computers in the course
of a day. Computers are increasingly being viewed as
public utilities that are as ubiquitous as electricity
and water, and as a result, users will no longer need
to value computers as an expensive resource. Instead,
users will place greater worth on their personal data
stored on these computers.

Such mobility would be useful to virtually anyone
using computers today. For instance, a student could
have two workstations, one at home and one at the
lab, and switch back and forth every day without hav-
ing to carry a laptop with him. A businessman could

Figure 1: SLYK facilitates the migration of user state
between network connected machines.

travel across the United States and recover his lat-
est work on any computer as long as he has Internet
access. On top of making life easier, this concept of
migration would make mobility more secure and less
expensive.

This novel view of computing, however, opens up
a new batch of interesting challenges that need to be
addressed before such a system can be successfully
deployed. First, for maximum deployability reasons,
no cooperation from the rest of the network should
be required. In other words, if a user is migrating
from one machine to another, the rest of the network
should not be aware of it. We refer to this challenge
as network transparency. Second, in order to offer the
most flexibility, the migration platform needs to be
hardware- and operating system independent. One
promising approach is to use virtual machines which,
by nature, do not depend on the underlying operat-
ing system and therefore allow true machine trans-
parency [8]. Third, our system needs to provide a
fault-tolerant approach for data storage.

Clearly, using the user machine hard-drive to store
the virtual machine state is hazardous since the fail-
ure of the user machine would imply an unrecover-
able loss of data. We propose to use a Distributed
Hash Table (DHT) store acting as a virtual hard-
drive (HD) to cache blocks of the memory image. We
thus have to develop a communication scheme allow-
ing to load and fetch memory blocks from the DHT.
One extra advantage of such a scheme is that it of-
fers a backup copy of the virtual machine that can be



used for recovery later on.

In this paper we focus on the problem of migrating
user state as users traverse machines. This state can
be packaged and sent over a network to resume ex-
ecution on a different physical machine, as shown in
Figure 1. Since the virtual machine simulates a com-
plete architecture, users are permitted to run any op-
erating system and application compatible with the
emulated architecture.

We propose SLYK!, a virtual machine-based mi-
gration platform that preserves active connections
across machine migrations and offers a higher level
of fault-tolerance. Based on QEMU [2], SLYK emu-
lates an x86-based platform capable of running many
major operating systems, including Linux, Windows,
and FreeBSD. The state of any virtual system run-
ning on SLYK can be packaged up and sent over the
network to be resumed by any other machine running
SLYK.

2 Related Work

Previous work on using virtual machines to migrate
state focuses mainly on optimizing the performance
of emulation and the speed of migration [14]. Al-
though performance is important for the mainstream
adoption of virtual machines, there are other impor-
tant factors such as fault-tolerance and transparent
operation with the outside world.

Internet Suspend and Resume (ISR) [9] presents a
straightforward implementation of a virtual machine
migration infrastructure. Upon suspend, the state of
the virtual machine is stored on a remote NF'S server.
When resumed, the state of the virtual machine is
copied from NFS onto the target machine and the
virtual machine is started.

Optimizing the Migration of Virtual Computers de-
scribes several optimizations to speed state migration
time [14]. The goal is to make it practical to mi-
grate state between home and work computers over
a 384kbps link. The first optimization, called bal-
looning, involves requesting many memory pages and
clearing them to zero to coerce the operating system
into swapping out all but the most important memory
pages immediately before migration. The memory is
then compressed using gzip and sent to the target
machine. Virtual HD blocks are left on the source
machine to be requested as needed by the target ma-
chine.

ISLYK, pronounced “Slick”, is taken from the authors’ last
names: Shu, Lin, You, and Koch.

This infrastructure suffers from two drawbacks.
First, all active network connections are lost during
migration. Applications that depend on these con-
nectins need to be reset on the target machine. Sec-
ond, HD blocks which have not been requested and
cached locally may become inaccessible when their
host machines go down.

Venti-DHash [15] is a peer-to-peer backup system
based on the Venti archival storage system [13] with
DHash running as the back-end storage. In this sys-
tem, regular snapshots of filesystems are kept over
the Internet by streaming active blocks into DHash,
in the form of a Venti stream. It ensures that any
unique block is stored only once. SLYK shares much
of the same DHash infrastructure as Venti-DHash
but relaxes many of the requirements of a complete
archival system.

Mobile IP [12] provides mobility by always routing
packets first to a static home host then to the mo-
bile host, which works when a static host is always
available and not separated by the network. How-
ever, failure of this home host results in loss of all
active mobile connections.

There have been several proposals to migrate state
at a finer granularity [3, 18, 20]. These systems ex-
ploit specific knowledge about the state or execution
environment to ship the minimum amount of data
needed for seamless transition. In contrast, virtual
machine approaches involve potentially needing to
send much more state than needed. However, the
general approach adopted by virtual machine migra-
tion platforms allows the migration of many more op-
erating systems and applications without any modi-
fication. Further, several optimizations can be per-
formed to reduce the inherent overhead of migration
via virtual machines [11, 14].

3 Challenges

There are many challenges to making a transparent,
fault-tolerant migration platform. To provide full mi-
gration, we need to transfer a lot of state efficiently,
including RAM and hard drive states. Unfortunately,
the majority of state is kept on the hard drive, and
it is both inefficient and unnecessary to transfer the
entire hard drive during migration. Despite this, we
still value personal state more than the actual hard-
ware that it is running on. As a result, we would
like to optimize hard drive migration, all the while
keeping enough state for full recovery in the case of
system failures.



One of the many things we aim for in SLYK is net-
work transparency, so that no matter where a user
migrates to, his active connections would still be in-
tact. Network transparency would allow a SLYK user
to, for example, continue downloading the same file
when he moves from one SLYK machine to another.
To achieve this goal, we need mechanisms like packet
forwarding that is not dependent on one central rout-
ing client, unlike what has been done with mobilelP.

To make SLYK as deployable as possible, we want
as little cooperation from the guest O/S or services
as possible. In other words, we don’t want to require
any modifications on the part of the guest O/S or ser-
vices in order to use SLYK. Transferring data from
one host O/S to another requires dealing with differ-
ent endians and data representations. SLYK needs
to overcome these differences to be portable to all
the commonly-used platforms like Linux, OS X, and
Windows.

In the past, a lot of work has been done on mi-
grating states without keeping the active connections
(ISR), or optimizing performance with a trade-off in
fault-tolerance. What distinguishes SLYK from pre-
vious projects is that it incorporates the properties
that you would normally want in a migrated system,
such as continuing connections and fault-tolerant de-
mand paging, into one single platform.

4 System Overview

SLYK is a virtual machine-based platform that allows
states to be migrated across three platforms (Linux,
0OS X, Windows), but yet, transparent to the net-
work, to the host machine, and with fault-tolerance in
data integrity. The platform-independent migration
starts with a virtual machine emulating hardware
states and keeps a record of all the CPU, timer states,
and such. To allow connections to stay alive after
migrating the virtual system, we implemented the
additional capability within the virtual machine to
communicate with one another using rpc’s, without
disrupting servers or other non-SLYK nodes on the
network. Basically, it operates within its own virtual
network environment. Holding a copy of the hard-
ware, RAM, and connection states, the only other
thing that could keep a SLYK machine from running
as if it were a real physical machine is loosing parts
of the hard drive image. To address this problem,
we designed SLYK to run on a virtual hard drive
demand-paged from a DHT store.

4.1 Machine Emulation

SLYK is built on top of QEMU [2], a highly portable
open source emulator that supports both the x86 and
PowerPC architectures. Based on dynamic transla-
tion, QEMU is a much faster processor emulator than
Bochs [10], and is capable of either full system emu-
lation, including a processor and various peripherals,
or user mode emulation that allows Linux processes
to be migrated across CPUs.

4.2 Remote Communication

XMLRPC++

4.3 Reliable Storage

To provide reliable storage, we chose to replicate
the hard drive image on a DHT. The specific imple-
mentation of DHT that we use is OpenDHT, which
runs on PlanetLab 24-7 with over 300 nodes available
for answering put and get requests. OpenDHT sup-
ports communication through xmlrpe, and provides
the reliable storage by replicating segments across its
network of nodes. DHash, another implementation
of the DHT service, also exhibits the fault-tolerant
property that we aim for in SLYK. However, access-
ing services on OpenDHT does not require that you
also become one of the nodes. In addition, because
of a previous implementation choice on using xmlrpc
for remote communication, OpenDHT undoubtedly
becomes the better choice of the two.

4.4 Migration

State transfer amounts to serializing QEMU’s mem-
ory representation, CPU and timer states, sending it
over the network, unserializing the image on the other
end, and bootstrapping SLYK with this memory im-
age. However, suspending the virtual system while
waiting for the large image to transfer may not be
acceptable to the user, so SLYK follows these steps
when transferring ownership to the new machine:

1. Begin transferring memory pages to the new ma-
chine.

2. Continue executing the virtual system on the old
machine, marking any pages written to as dirty.

3. When the initial transfer of memory is done, sus-
pend the virtual system and transfer only the
dirty pages to the new machine.



4. Send a message to the new machine that indi-
cates all pages have been transferred and it can
gain ownership of the virtual system and resume
operation.

In this scheme the virtual machine does need to
suspend temporarily, but only while the dirty pages
are being transferred before resuming operation.

5 Network Transparency

5.1 Virtual Network Environment

network environment. illusion behind NAT.

5.2 Active Connection Migration

Without cooperation from the remote machine, net-
work connections cannot be fully migrated. There
have been several proposals to augment internet rout-
ing with a truly mobile system such as i3 [16] and
uip [7]. However, without the widespread deploy-
ment of such systems, and given the restriction that
no modification can be done to the remote machines
for maximal deployability, SLYK is forced to adopt a
packet forwarding-like technique such as that used in
MobileIP [12]. Unlike MobileIP, however, SLYK does
not have a special home machine where all packets
must first go through.

SLYK is optimized for the common case of the vir-
tual system trying to establish a direct connection
with a remote machine. In this situation, a direct
connection is established between the host machine
running SLYK and the remote machine, and packet
rewriting tricks them into thinking they are commu-
nicating directly. It is only when there are lingering
active connections at the time of migration that for-
warding needs to take place.

When there are lingering active connections, the
machine that the virtual system migrated from can-
not fully shutdown SLYK. Instead, SLYK switches
into a simple routing mode which keeps the connec-
tion alive with the remote machine and forwards any
incoming packets to the new location of the virtual
system. In this mode, SLYK also forwards packets
from the virtual system to the remote machine. Fig-
ure 2b shows computer A switching into this routing
mode since the connection to S1 was lingering at the
time of migration.

This scheme implies that SLYK needs to maintain
a table for all indirect remote machines the virtual
system is actively in contact with. For example, in

Figure 2b, computer A needs to take note that com-
puter B is the current location of the virtual sys-
tem and computer B needs to record that packets
intended for the open connection to S1 first need to
go through A. This bookkeeping is also important
to update the routing machines when ownership is
transferred. Figure 2c shows another migration, this
time to C, which requires a message to be sent to A
to update its route table and for C to remember the
indirect route to both S1 and S2.

Two potential problems may arise from this for-
warding scheme. First, a forwarding machine may go
down. This would appear to the virtual system the
same as if the remote machine dropped the connec-
tion. In many situations, the interested application
or operating system may attempt to reestablish the
connection and would succeed in directly connecting
with the remote machine. Other times, the connec-
tion may not be so recoverable. These situations are
unfortunate, but at least the loss of a forwarding ma-
chine would only result in dropping the indirect con-
nections through that machine, versus the MobilelP
scheme where losing the home machine would result
in the loss of all indirect connections.

The second problem is that the routing tables may
grow large. Entries in the table are cleared as con-
nections close. The hope is that most TCP/IP con-
nections are not very long lived. In the worst case,
SLYK can always break the most idle connections to
make space. If an application attempts to reestablish
this connection, it would be a direct connection this
time, which would not grow the routing table.

6 Virtual HD Store

Using the local hard drive of the SLYK machine
clearly makes the system error-prone. If one of the
SLYK machines were to go down, the data stored on
its HD would be desperately lost until the machine re-
covers. This loss of data could prevent the user from
resuming his activities on a new machine. In addi-
tion, transferring the content of a full hard-drive over
the network would make the migration untractable.
For these reasons, we provide a virtual hard drive
accessible from all SLYK machines at any time. This
hard drive is fully transparent, in a sense that from
the point of view of the SLYK machine, everything
happens as if the local hard drive was used. The read
and write operations to the local hard drive are sim-
ply intercepted and converted into read and write op-
erations to the virtual hard drive. The virtual mem-
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Figure 2: SLYK preserves active network connections through machine migration. (a) Before any migration
occurs, machine A connects to sender S1. (b) After migration to machine B, the connection to S1 is indirectly
maintained via forwarding through A. B also establishes a direct connection with sender S2. (c¢) Finally, when
migrated to C active connections to S1 and S2 are maintained via forwarding though A and B, respectively.
As active connections close these forwarding routes can be cleaned up.

ory, however, is transferred over the network during
migration.

The virtual HD is stored on a DHT store such as
DHash [5] running on top of Chord [17]. Since the
virtual system runs only on one computer at a time,
no complex coherency protocol between SLYK and
the DHT is needed. The first time a block is fetched,
SLYK caches it in its local store. On writes, SLYK
marks the block as dirty and eventually flushes the
block out to the DHT.

We use OpenDHT ([19]), a publicly accessible
DHT service running on 200 widely distributed hosts
provided by PlanetLab ([1]). OpenDHT offers a
very transparent way to store and access jkey,values;,
pairs. There is a 1024-byte limit on values in
OpenDHT, therefore data has to be broken into
blocks before being stored. Since QEMU’s data stor-
age is based on 512-byte disk sectors, we use these
sectors as values in OpenDHT. It is important to
note that data cannot be changed or removed once
it has been stored on OpenDHT. Instead, a timeout
mechanism makes the data obsolete on the DHT af-
ter a certain amount of time. The timeout value is
specified by the user and should be chosen carefully.
Using a too small timeout may result in loss of data.
Using a too large value may conflict with PlanetLab
requirements. However, the operability of SLYK is
not impacted by this choice as long as a reasonable
value is taken. Our implementation uses a timeout of
10 minutes.

We use Secure Hash Algorithm 1 (SHA1 [6]) for
the key computation. SHA1 belongs to the family of
MD4 hash functions. It takes as input a message of
less than 2.64 bits and produces a 20-byte message di-
gest. The code for SHA1 is delivered under the GNU
license and follow the specifications defined in [4].

4
flush / fetch
flush
—— migrate migrate
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Figure 3: For fault-tolerance and fast migration,
SLYK stores virtual HD blocks on an external DHT
store. HD blocks are paged in on demand and cached
locally. Dirty blocks are periodically written out to
keep the DHT updated. Before migration, the final
dirty blocks are flushed to the DHT.

The DHT should be kept as updated as possible;
otherwise, flushing dirty blocks out to the DHT may
become part of the critical path in migration. SLYK
should not be too eager to flush blocks either, since
batching writes to the same block saves bandwidth.

The approach adopted by SLYK is to prioritize
dirty blocks by least recently written and flush those
blocks first. The idea is that some blocks are going to
be more actively written to than others. The ones ac-
tively being written to should be the last to be flushed
since there is a good chance that deferring them will
save bandwidth. With this priority in mind, SLYK
continuously in the background flushes dirty blocks
to the DHT, but it throttles itself to keep from using
too much bandwidth. Only when migration is immi-
nent does SLYK use its full bandwidth to fully flush
out dirty pages.
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Figure 3 shows the migration process from B to
C. Before control is transferred to C, B flushes the
remainder of its dirty blocks to the DHT. Then as C
runs, it demands pages in blocks from the DHT to
cache locally. Computer A shown in gray has already
flushed its dirty blocks.

6.1 File Format

(figure)

6.2 DHT
6.3 Cache

(figure)

7 Backup

To prevent failure of the current machine from caus-
ing permanent loss of the virtual system, the memory
image is periodically backed up onto the DHT. This
copying can be very costly in terms of bandwidth if
done too frequently.

There may be a few ways to speed this up be-
sides scaling back the frequency of backups. For very
low or no bandwidth situations, the memory can be
backed up to the physical HD instead. In addition,
memory backup might be able to piggy-back on the
migration process. After control is transferred to the
new machine, the old machine will still have a very
recent copy of the virtual system’s memory. Instead
of immediately discarding this data, the old machine
can contact the DHT and back up this data without
directly consuming bandwidth from the user who is
now on the new machine.

Table 1: Migration times...just a sample table

0/S Linux Mac OS X Windows
Debian 245 61 75
Win2k 123 124 89
Knoppix 110 183 193
Blah 164 223 213

8 Results

9 Future Work

10 Conclusion

SLYK attempts to offer strong notions of mobility in-
cluding machine transparency, network transparency,
and active connection migration. It does so at a per-
formance cost in order to ensure compatibility with as
many operating systems, applications, and comput-
ing environments as possible. Our prototype demon-
strates that despite this overhead a working, usable
system can be built that offers the illusion of full mo-
bility.

Many optimizations can be performed to bring
down the cost of mobility. Some such as dynamic
binary translation, gzip compression, and balloon-
ing have already been explored. Others may benefit
greatly from hardware, operating system, and net-
work support. The costs associated with mobility
will continue to decrease until one day full user mo-
bility may become a normal part of our computing
environment.
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