A Self-Calibrating, Vision-based Navigation Assistant

Olivier Koch
koch@csail.mit.edu

Seth Teller
teller@csail.mit.edu

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory (CSAIL)
Motivation

- Navigation in GPS-denied environments
 - Indoor / underground / dense urban areas

- Explore and retrace for human users
 - Soldiers in the field / Visually impaired / Disabled people
Related work

Visual SLAM

- Davison et al., MonoSLAM: Real-Time Single Camera SLAM, PAMI ’07
- J. Neira et al., Data association in O(n) for Divide and Conquer SLAM, RSS ’07
- Wolf et al., Robust Vision-Based Localization by Combining an Image Retrieval System with Monte Carlo Localization, IEEE Transactions Robotics ’05
Related work

Metric and topological localization

- Zhang & Kosecka, Hierarchical Building Recognition, Image and Vision Computing ‘07
- B. Kuipers, Using the topological skeleton for scalable global metrical map-building, IROS ’04

Appearance-based

- Cummins & Newman, Probabilistic Appearance Based Navigation and Loop Closing, ICRA ‘07
Problem statement

Input
- Video sequence
- Calibration sequence

Output
- Backtrack along linear path
- Loose guidance in 2D
Novelty

- Provides non-metric, loose guidance to humans
- Purely vision-based
- Requires no camera calibration
- Does not constraint the number of cameras or their relative position on the rig
- Uses a new way of correlating user to image motion
Assumptions

- The motion of the user is continuous
- The rigid-body transformation between cameras is fixed but can change slightly
- The environment is mostly static and contains descriptive visual features
- The user evolves in a flat 2D world (although our method extends to 3D motion)
- The user needs to train the system for a few minutes (in any environment, once and for all)
Capture Rig & User Interface

Four IEEE1394 PointGrey Firefly Cameras
4 x 360 x 240 SIFT detection & tracking at 4Hz
FOV: 360° (h) x 90° (v)

Embedded PC cluster
Three 1.8Ghz Intel Core 2 Duo
3h untethered operation

Tablet PC Interface
Microphone/earphone
Place Graph

- Nodes: places of strategic interest for navigation
- Edges: physical path between nodes
- Built online and automatically during exploration
Navigation Strategy

- Provide rotation guidance at nodes
- Provide relative progress along edges
- In a human-understandable fashion
Place graph data structure

Node
1 image features set

Edge
A series of image feature sets collected at regular time intervals
Place Graph

- Nodes in the map are created online and automatically:
 - At places of high rotation rate
 - At places of drastic change in the scene appearance

Subset of Place Graph (INDOOR dataset)
Nodes overlaid on 2D map manually.

Sample node (INDOOR dataset)
Rotation classifier

TRAINING

Input: Calibration Video Sequence, Coarse user motion
Output: Classifier table

QUERY

Input: Two features sets
Output: Optimal user rotation bringing the two sets in alignment
Rotation classifier

TRAINING

World features

User

Constant speed assumption

User at t_1

User at t_2

Coarse user rotation angle α

Feature matching

Camera Image

Time t_1

Time t_2
Rotation classifier

TRAINING

Feature matches $t_1 - t_2$

Camera image
- Match source bin
- Match destination bin

User rotation angle α

Match source bin

Match destination bin

Destination camera

Source camera
Rotation classifier

TRAINING

Calibration sequence - user rotates in place – 1 minute – 4 Hz – 240 frames

Classifier tables
Left: camera 0 – 0
Right: camera 0 -2
Rotation classifier

TRAINING

Input

Calibration Video Sequence
Coarse user motion

Output

Classifier table

QUERY

Input

Two features sets

Output

Optimal user rotation bringing the two sets in alignment
Navigation at node

Method

Match features between first visit ($t = t_1$) and revisit ($t = t_2$)

For each match, query the classifier and return a rotation angle

Run RANSAC voting to determine optimal rotation angle α

Output

Rotation guidance to exit the node
Navigation along edges

Input

A series of observations $S_0 = \{o^1, \ldots, o^n\}$ along edge (first visit)
Current observation o'^t

Output

Relative progress along the edge
Navigation along edges

Method: recursive state estimator

State vector ν.

ν_i represents the probability of the user standing at location of observation o^i.

Initialization (user leaving node)

$\nu_i = 1$ if $i=0$, 0 otherwise.
Navigation along edges

At each time step, given a new observation o'^t:

- **Transition update** (motion continuity assumption)

 $$v^{t+1} = v^t \otimes \text{Gaussian} (0, \sigma)$$

 where σ is a function of frame rate and typical user motion speed

- **Observation update**

 $$v^{t+1}_i = v^t_i \times P(o^i, o'^t)$$

 where $P(a, b)$ is the probability that a and b are observed from the same location
Datasets

<table>
<thead>
<tr>
<th>Name</th>
<th>Duration</th>
<th>Path length</th>
<th>Frame rate</th>
<th># frames</th>
<th># nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDOOR</td>
<td>45 min</td>
<td>2.5 km</td>
<td>4 Hz</td>
<td>11,000</td>
<td>280</td>
</tr>
<tr>
<td>OUTDOOR</td>
<td>12 min</td>
<td>1 km</td>
<td>4 Hz</td>
<td>2,900</td>
<td>43</td>
</tr>
</tbody>
</table>

OUTDOOR Dataset
Kendall Square, Cambridge MA

INDOOR Dataset
MIT Underground
Fig. 1 - Rotation guidance output while user rotates in place in a new environment

Fig. 2 – Error distribution against IMU-ground truth. **Standard deviation = 12 deg.**
Navigation along edges

Fig 3 – belief state propagation while user walks along an edge (INDOOR dataset)

Fig 4 – Relative progress along several consecutive edges. Ground-truth estimated using constant speed assumption. **Standard deviation 3.3 frames (1 second, 1.5m)**
Fig 5 – Topological map automatically generated by the system (INDOOR dataset). Nodes overlaid on the map manually.
Summary

Input

- Video sequence
- Calibration sequence

Output

- Backtrack along linear path
- Loose guidance in 2D

- No camera calibration
- No constraint on number of cameras or their relative position on the rig
- Requires rigid-body transformation between cameras to be fixed with some flexibility
- Provides loose guidance / imprecise directions
- New way of correlating user to image motion
Failure modes

- User leaving the exploration path
- Highly repetitive environments (tunnels)
- Significant change in lighting
- Dynamic scenes (crowd)
- Fast user motion (motion blur) or low lighting
- Ambiguous configurations (Y-shape)
- Handles only rotation along z-axis (lateral motion)
Future work

- Global localization
- User leaving the exploration path
- Path self-resection (non-linear graphs / loop closure)
- Augmented reality application (virtual tagging)